Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.384
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2316447121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557174

RESUMO

Natural killer (NK) cell immunotherapy has gained attention as a promising strategy for treatment of various malignancies. In this study, we used a genome-wide CRISPR screen to identify genes that provide protection or susceptibility to NK cell cytotoxicity. The screen confirmed the role of several genes in NK cell regulation, such as genes involved in interferon-γ signaling and antigen presentation, as well as genes encoding the NK cell receptor ligands B7-H6 and CD58. Notably, the gene TMEM30A, encoding CDC50A-beta-subunit of the flippase shuttling phospholipids in the plasma membrane, emerged as crucial for NK cell killing. Accordingly, a broad range of TMEM30A knock-out (KO) leukemia and lymphoma cells displayed increased surface levels of phosphatidylserine (PtdSer). TMEM30A KO cells triggered less NK cell degranulation, cytokine production and displayed lower susceptibility to NK cell cytotoxicity. Blockade of PtdSer or the inhibitory receptor TIM-3, restored the NK cell ability to eliminate TMEM30A-mutated cells. The key role of the TIM-3 - PtdSer interaction for NK cell regulation was further substantiated by disruption of the receptor gene in primary NK cells, which significantly reduced the impact of elevated PtdSer in TMEM30A KO leukemic cells. Our study underscores the potential significance of agents targeting the interaction between PtdSer and TIM-3 in the realm of cancer immunotherapy.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Células Matadoras Naturais , Leucemia , Linfoma , Membrana Celular/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Interferon gama/metabolismo , Receptores de Células Matadoras Naturais , Humanos , Leucemia/metabolismo , Linfoma/metabolismo , Proteínas de Membrana/metabolismo
2.
Cells ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38607046

RESUMO

Membrane nanotubes (NTs) are dynamic communication channels connecting spatially separated cells even over long distances and promoting the transport of different cellular cargos. NTs are also involved in the intercellular spread of different pathogens and the deterioration of some neurological disorders. Transport processes via NTs may be controlled by cytoskeletal elements. NTs are frequently observed membrane projections in numerous mammalian cell lines, including various immune cells, but their functional significance in the 'antibody factory' B cells is poorly elucidated. Here, we report that as active channels, NTs of B-lymphoma cells can mediate bidirectional mitochondrial transport, promoted by the cooperation of two different cytoskeletal motor proteins, kinesin along microtubules and myosin VI along actin, and bidirectional transport processes are also supported by the heterogeneous arrangement of the main cytoskeletal filament systems of the NTs. We revealed that despite NTs and axons being different cell extensions, the mitochondrial transport they mediate may exhibit significant similarities. Furthermore, we found that microtubules may improve the stability and lifespan of B-lymphoma-cell NTs, while F-actin strengthens NTs by providing a structural framework for them. Our results may contribute to a better understanding of the regulation of the major cells of humoral immune response to infections.


Assuntos
Estruturas da Membrana Celular , Linfoma , Nanotubos , Animais , Citoesqueleto/metabolismo , Actinas/metabolismo , Nanotubos/química , Mitocôndrias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Linfoma/metabolismo , Mamíferos/metabolismo
3.
Ann Med ; 56(1): 2329130, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38489405

RESUMO

In recent years, the incidence and mortality rates of lymphoma have gradually increased worldwide. Tumorigenesis and drug resistance are closely related to intracellular inflammatory pathways in lymphoma. Therefore, understanding the biological role of inflammatory pathways and their abnormal activation in relation to the development of lymphoma and their selective modulation may open new avenues for targeted therapy of lymphoma. The biological functions of inflammatory pathways are extensive, and they are central hubs for regulating inflammatory responses, immune responses, and the tumour immune microenvironment. However, limited studies have investigated the role of inflammatory pathways in lymphoma development. This review summarizes the relationship between abnormal activation of common inflammatory pathways and lymphoma development to identify precise and efficient targeted therapeutic options for patients with advanced, drug-resistant lymphoma.


Inflammatory pathways directly or indirectly regulate the TME and are closely related to the development of lymphoma.This review was conducted to elucidate the connection between inflammatory pathways and the tumorigenesis and drug resistance of several common lymphomas.Overall, targeting abnormally activated molecules upstream and downstream of lymphoma inflammatory pathways in the future is expected to be a new target for lymphoma treatment.


Assuntos
Linfoma , Humanos , Linfoma/etiologia , Linfoma/metabolismo , Transformação Celular Neoplásica , Microambiente Tumoral
4.
J Hematol Oncol ; 17(1): 8, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331849

RESUMO

BACKGROUND: It remains challenging to obtain positive outcomes with chimeric antigen receptor (CAR)-engineered cell therapies in solid malignancies, like colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC). A major obstacle is the lack of targetable surface antigens that are not shared by healthy tissues. CD70 emerges as interesting target, due to its stringent expression pattern in healthy tissue and its apparent role in tumor progression in a considerable amount of malignancies. Moreover, CD70 is also expressed on cancer-associated fibroblasts (CAFs), another roadblock for treatment efficacy in CRC and PDAC. We explored the therapeutic potential of CD70 as target for CAR natural killer (NK) cell therapy in CRC, PDAC, focusing on tumor cells and CAFs, and lymphoma. METHODS: RNA-seq data and immunohistochemical analysis of patient samples were used to explore CD70 expression in CRC and PDAC patients. In addition, CD70-targeting CAR NK cells were developed to assess cytotoxic activity against CD70+ tumor cells and CAFs, and the effect of cytokine stimulation on their efficacy was evaluated. The in vitro functionality of CD70-CAR NK cells was investigated against a panel of tumor and CAF cell lines with varying CD70 expression. Lymphoma-bearing mice were used to validate in vivo potency of CD70-CAR NK cells. Lastly, to consider patient variability, CD70-CAR NK cells were tested on patient-derived organoids containing CAFs. RESULTS: In this study, we identified CD70 as a target for tumor cells and CAFs in CRC and PDAC patients. Functional evaluation of CD70-directed CAR NK cells indicated that IL-15 stimulation is essential to obtain effective elimination of CD70+ tumor cells and CAFs, and to improve tumor burden and survival of mice bearing CD70+ tumors. Mechanistically, IL-15 stimulation resulted in improved potency of CD70-CAR NK cells by upregulating CAR expression and increasing secretion of pro-inflammatory cytokines, in a mainly autocrine or intracellular manner. CONCLUSIONS: We disclose CD70 as an attractive target both in hematological and solid tumors. IL-15 armored CAR NK cells act as potent effectors to eliminate these CD70+ cells. They can target both tumor cells and CAFs in patients with CRC and PDAC, and potentially other desmoplastic solid tumors.


Assuntos
Fibroblastos Associados a Câncer , Linfoma , Humanos , Animais , Camundongos , Citotoxicidade Imunológica , Interleucina-15/metabolismo , Linhagem Celular Tumoral , Células Matadoras Naturais , Imunoterapia Adotiva/métodos , Linfoma/metabolismo , Citocinas/metabolismo , Ligante CD27
5.
J Exp Clin Cancer Res ; 43(1): 43, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321568

RESUMO

BACKGROUND: Angioimmunoblastic T-cell lymphoma (AITL) is a malignancy with very poor survival outcome, in urgent need of more specific therapeutic strategies. The drivers of malignancy in this disease are CD4+ follicular helper T cells (Tfh). The metabolism of these malignant Tfh cells was not yet elucidated. Therefore, we decided to identify their metabolic requirements with the objective to propose a novel therapeutic option. METHODS: To reveal the prominent metabolic pathways used by the AITL lymphoma cells, we relied on metabolomic and proteomic analysis of murine AITL (mAITL) T cells isolated from our established mAITL model. We confirmed these results using AITL patient and healthy T cell expression data. RESULTS: Strikingly, the mAITL Tfh cells were highly dependent on the second branch of the Kennedy pathway, the choline lipid pathway, responsible for the production of the major membrane constituent phosphatidylcholine. Moreover, gene expression data from Tfh cells isolated from AITL patient tumors, confirmed the upregulation of the choline lipid pathway. Several enzymes involved in this pathway such as choline kinase, catalyzing the first step in the phosphatidylcholine pathway, are upregulated in multiple tumors other than AITL. Here we showed that treatment of our mAITL preclinical mouse model with a fatty acid oxydation inhibitor, significantly increased their survival and even reverted the exhausted CD8 T cells in the tumor into potent cytotoxic anti-tumor cells. Specific inhibition of Chokα confirmed the importance of the phosphatidylcholine production pathway in neoplastic CD4 + T cells, nearly eradicating mAITL Tfh cells from the tumors. Finally, the same inhibitor induced in human AITL lymphoma biopsies cell death of the majority of the hAITL PD-1high neoplastic cells. CONCLUSION: Our results suggest that interfering with choline metabolism in AITL reveals a specific metabolic vulnerability and might represent a new therapeutic strategy for these patients.


Assuntos
Linfadenopatia Imunoblástica , Linfoma de Células T , Linfoma , Humanos , Animais , Camundongos , Proteômica , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/patologia , Linfadenopatia Imunoblástica/genética , Linfadenopatia Imunoblástica/metabolismo , Linfadenopatia Imunoblástica/patologia , Linfoma de Células T/genética , Linfoma de Células T/metabolismo , Linfoma de Células T/patologia , Fosfatidilcolinas/metabolismo , Linfoma/metabolismo , Linfoma/patologia
6.
Blood ; 143(8): 685-696, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-37976456

RESUMO

ABSTRACT: CD19 chimeric antigen receptor (CAR) T cells and CD20 targeting T-cell-engaging bispecific antibodies (bispecs) have been approved in B-cell non-Hodgkin lymphoma lately, heralding a new clinical setting in which patients are treated with both approaches, sequentially. The aim of our study was to investigate the selective pressure of CD19- and CD20-directed therapy on the clonal architecture in lymphoma. Using a broad analytical pipeline on 28 longitudinally collected specimen from 7 patients, we identified truncating mutations in the gene encoding CD20 conferring antigen loss in 80% of patients relapsing from CD20 bispecs. Pronounced T-cell exhaustion was identified in cases with progressive disease and retained CD20 expression. We also confirmed CD19 loss after CAR T-cell therapy and reported the case of sequential CD19 and CD20 loss. We observed branching evolution with re-emergence of CD20+ subclones at later time points and spatial heterogeneity for CD20 expression in response to targeted therapy. Our results highlight immunotherapy as not only an evolutionary bottleneck selecting for antigen loss variants but also complex evolutionary pathways underlying disease progression from these novel therapies.


Assuntos
Linfoma de Células B , Linfoma , Humanos , Recidiva Local de Neoplasia/metabolismo , Linfócitos T , Imunoterapia Adotiva/métodos , Linfoma de Células B/genética , Linfoma de Células B/terapia , Linfoma/metabolismo , Antígenos CD19 , Receptores de Antígenos de Linfócitos T
7.
Clin Transl Oncol ; 26(3): 720-731, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37558851

RESUMO

PURPOSE: The International Extranodal Lymphoma Study Group (IELSG) score is widely used in clinical practice to stratify the risk of primary central nervous system lymphoma (PCNSL) patients. Our study aims to confirm and improve the IELSG score in PCNSL patients based on Chinese populations. MATERIALS AND METHODS: A total of 79 PCNSL patients were retrospectively analyzed. All patients treated with high-dose methotrexate (HD-MTX)-based therapy collected clinical data. The receiver-operating characteristic (ROC) curve was used to determine the optimal cut-off values for the factors in IELSG score. Progression of disease (POD) at the most landmark time point was determine by Epanechnikov kernel and the area under the ROC curve (AUROC). Kaplan-Meier and multivariable regression methods were used to analyze survival data. Nomogram was generated for calculating the weight of each selected factor. RESULTS: The traditional IELSG score had no significant difference on OS and PFS except ECOG ≥ 2 and could not stratify the risk groups in PCNSL. The improved IELSG scoring system was established, which incorporated age ≥ 54 years, ECOG ≥ 2, deep brain structure, elevated CSF protein, and LDH/ULN > 0.75. On the other hand, POD18 was identified as a new powerful prognostic factor for PCNSL. In multivariate analysis, POD18 and the improved IELSG scoring system were independent prognostic factors for OS. Nomogram including the two significant variables showed the best performance (C-index = 0.828). CONCLUSIONS: In this study, the IELSG score was improved and a new prognostic indicator POD18 was incorporated to construct a nomogram prognostic model, thereby further improving the predictive ability of the model.


Assuntos
Neoplasias do Sistema Nervoso Central , Linfoma , Humanos , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/patologia , Metotrexato/uso terapêutico , Encéfalo/metabolismo , Linfoma/metabolismo
8.
Front Immunol ; 14: 1227572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965326

RESUMO

The activating receptor natural killer group 2, member D (NKG2D) represents an attractive target for immunotherapy as it exerts a crucial role in cancer immunosurveillance by regulating the activity of cytotoxic lymphocytes. In this study, a panel of novel NKG2D-specific single-chain fragments variable (scFv) were isolated from naïve human antibody gene libraries and fused to the fragment antigen binding (Fab) of rituximab to obtain [CD20×NKG2D] bibodies with the aim to recruit cytotoxic lymphocytes to lymphoma cells. All bispecific antibodies bound both antigens simultaneously. Two bibody constructs, [CD20×NKG2D#3] and [CD20×NKG2D#32], efficiently activated natural killer (NK) cells in co-cultures with CD20+ lymphoma cells. Both bibodies triggered NK cell-mediated lysis of lymphoma cells and especially enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) by CD38 or CD19 specific monoclonal antibodies suggesting a synergistic effect between NKG2D and FcγRIIIA signaling pathways in NK cell activation. The [CD20×NKG2D] bibodies were not effective in redirecting CD8+ T cells as single agents, but enhanced cytotoxicity when combined with a bispecific [CD19×CD3] T cell engager, indicating that NKG2D signaling also supports CD3-mediated T cell activation. In conclusion, engagement of NKG2D with bispecific antibodies is attractive to directly activate cytotoxic lymphocytes or to support their activation by monoclonal antibodies or bispecific T cell engagers. As a perspective, co-targeting of two tumor antigens may allow fine-tuning of antibody cancer therapies. Our proposed combinatorial approach is potentially applicable for many existing immunotherapies but further testing in different preclinical models is necessary to explore the full potential.


Assuntos
Anticorpos Biespecíficos , Linfoma , Neoplasias , Humanos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células Matadoras Naturais , Linfoma/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/metabolismo , Antígenos CD19
9.
Cells ; 12(19)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37830606

RESUMO

One of the traits of cancer cells is abnormal DNA methylation patterns. The idea that age-related epigenetic changes may partially explain the increased risk of cancer in the elderly is based on the observation that aging is also accompanied by comparable changes in epigenetic patterns. Lineage bias and decreased stem cell function are signs of hematopoietic stem cell compartment aging. Additionally, aging in the hematopoietic system and the stem cell niche have a role in hematopoietic stem cell phenotypes linked with age, such as leukemia and lymphoma. Understanding these changes will open up promising pathways for therapies against age-related disorders because epigenetic mechanisms are reversible. Additionally, the development of high-throughput epigenome mapping technologies will make it possible to identify the "epigenomic identity card" of every hematological disease as well as every patient, opening up the possibility of finding novel molecular biomarkers that can be used for diagnosis, prediction, and prognosis.


Assuntos
Leucemia , Linfoma , Humanos , Idoso , Epigenômica , Envelhecimento/genética , Epigênese Genética , Leucemia/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Linfoma/genética , Linfoma/terapia , Linfoma/metabolismo
10.
Front Immunol ; 14: 1251127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822931

RESUMO

Immunotherapeutic targeting of surface regulatory proteins and pharmacologic inhibition of critical signaling pathways has dramatically shifted our approach to the care of individuals with B cell malignancies. This evolution in therapy reflects the central role of the B cell receptor (BCR) signaling complex and its co-receptors in the pathogenesis of B lineage leukemias and lymphomas. Members of the Fc receptor-like gene family (FCRL1-6) encode cell surface receptors with complex tyrosine-based regulation that are preferentially expressed by B cells. Among them, FCRL1 expression peaks on naïve and memory B cells and is unique in terms of its intracellular co-activation potential. Recent studies in human and mouse models indicate that FCRL1 contributes to the formation of the BCR signalosome, modulates B cell signaling, and promotes humoral responses. Progress in understanding its regulatory properties, along with evidence for its over-expression by mature B cell leukemias and lymphomas, collectively imply important yet unmet opportunities for FCRL1 in B cell development and transformation. Here we review recent advances in FCRL1 biology and highlight its emerging significance as a promising biomarker and therapeutic target in B cell lymphoproliferative disorders.


Assuntos
Linfoma , Neoplasias , Animais , Camundongos , Humanos , Neoplasias/metabolismo , Linfócitos B/metabolismo , Receptores Fc/genética , Receptores Fc/metabolismo , Receptores de Superfície Celular/metabolismo , Linfoma/metabolismo , Proteínas de Membrana/metabolismo
11.
Sci Rep ; 13(1): 12916, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558703

RESUMO

The tumor suppressor p53 is a transcriptional factor that plays a crucial role in controlling acute toxicity and long-term malignant transformation of hematopoietic cells induced by genotoxic stress such as ionizing radiation. Among all transcriptional targets of p53, one gene that is robustly induced by radiation is the pleckstrin homology domain-only protein Phlda3. However, the role that Phlda3 plays in regulating the response of hematopoietic cells to radiation is unknown. Here, using isogenic cell lines and genetically engineered mouse models, we showed that radiation induces Phlda3 in human leukemia cells and mouse normal hematopoietic cells in a p53-dependent manner. However, deletion of the Phlda3 gene did not ameliorate radiation-induced acute hematologic toxicity. In addition, distinct from mice that lose p53, loss of Phlda3 did not alter the latency and incidence of radiation-induced thymic lymphoma in mice. Remarkably, whole-exome sequencing data showed that lymphomas in irradiated Phlda3+/+ mice harbor a significantly higher number of single nucleotide variants (SNVs) and indels compared to lymphomas in irradiated Phlda3+/- and Phlda3-/- littermates. Together, our results indicate that although deletion of Phlda3 does not accelerate the development of radiation-induced thymic lymphoma, fewer SNVs and indels are necessary to initiate lymphomagenesis after radiation exposure when Phlda3 is silenced.


Assuntos
Linfoma , Proteínas Nucleares , Neoplasias do Timo , Animais , Humanos , Camundongos , Linhagem Celular , Transformação Celular Neoplásica/genética , Linfoma/genética , Linfoma/radioterapia , Linfoma/metabolismo , Neoplasias do Timo/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Nucleares/genética
12.
Bioorg Chem ; 140: 106762, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37572533

RESUMO

EZH2 is a member of PcG and can induce the occurrence of cancer when it is highly expressed. As an EZH2 inhibitor, Tazemetostat (EPZ6438) can inhibit the methylation catalytic activity of EZH2. However, many studies have shown that inhibition of EZH2 alone does not efficiently block tumor development. Therefore, in this study, proteolytic targeting chimera technology was employed to enhance the antiproliferative potency of EPZ6438 by degrading the oncogenic activity of EZH2. Several PROTACs have been synthesized by combining EPZ6438 with four E3 ligase ligands based on VHL, CRBN, MDM2, and cIAP E3 ligase systems. In our study, compound E-3P-MDM2 is the most active PROTAC molecule. It degraded EZH2 of the SU-DHL-6 cells in a concentration and dose-dependent manner and also degraded both EED and SUZ12 protein without affecting their mRNA levels, then significantly inhibited the expression of H3K27me3. The in vitro antiproliferative activity of E-3P-MDM2 was much stronger than that of EPZ6438.


Assuntos
Linfoma , Neoplasias , Humanos , Quimera de Direcionamento de Proteólise , Linfoma/metabolismo , Neoplasias/metabolismo , Núcleo Celular/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteólise , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo
13.
Mol Cancer Ther ; 22(11): 1261-1269, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37596239

RESUMO

In immunotherapy with T cells genetically modified to express chimeric antigen receptors (CAR), autologous lymphocytes are extracted from the patient, genetically modified to obtain CAR-T cells, and reintroduced into the patient to attack cancer cells. The success of this therapy has been achieved in the area of CD19-positive leukemias and lymphomas, being approved for the treatment of non-Hodgkin's lymphomas, acute lymphoblastic leukemia, and multiple myeloma. CARs are proteins that combine antibody specificity with T-cell cytotoxicity. The most common toxicities associated with therapy were not predicted by preclinical testing and include cytokine release syndrome, neurotoxicity, and cytopenias. These toxicities are usually reversible. One of the main challenges facing the field is the high economic cost that therapy entails, so the search for ways to reduce this cost must be a priority. In addition, other challenges to overcome include the situation that not all patients are supplied with the product and the existence of long waiting times for the start of therapy. The aim of this review is to present the development of the structure of CAR-T cells, the therapies approved to date, the toxicity associated with them, and the advantages and limitations that they present as immunotherapy.


Assuntos
Linfoma , Mieloma Múltiplo , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/metabolismo , Receptores de Antígenos de Linfócitos T , Imunoterapia Adotiva , Antígenos CD19 , Linfoma/metabolismo , Imunoterapia , Linfócitos T , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo
14.
Front Immunol ; 14: 1183788, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426645

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous herpesvirus, which infects over 90% of the adult human population worldwide. After primary infections, EBV is recurrently reactivating in most adult individuals. It is, however, unclear, why these EBV reactivations progress to EBV+ Hodgkin (EBV+HL) or non-Hodgkin lymphomas (EBV+nHL) only in a minority of EBV-infected individuals. The EBV LMP-1 protein encodes for a highly polymorphic peptide, which upregulates the immunomodulatory HLA-E in EBV-infected cells, thereby stimulating the inhibitory NKG2A-, but also the activating NKG2C-receptor on natural killer (NK) cells. Using a genetic-association approach and functional NK cell analyses, we now investigated, whether these HLA-E-restricted immune responses impact the development of EBV+HL and EBV+nHL. Therefore, we recruited a study cohort of 63 EBV+HL and EBV+nHL patients and 192 controls with confirmed EBV reactivations, but without lymphomas. Here, we demonstrate that in EBV+ lymphoma patients exclusively the high-affine LMP-1 GGDPHLPTL peptide variant-encoding EBV-strains reactivate. In EBV+HL and EBV+nHL patients, the high-expressing HLA-E*0103/0103 genetic variant was significantly overrepresented. Combined, the LMP-1 GGDPHLPTL and HLA-E*0103/0103 variants efficiently inhibited NKG2A+ NK cells, thereby facilitating the in vitro spread of EBV-infected tumor cells. In addition, EBV+HL and EBV+nHL patients, showed impaired pro-inflammatory NKG2C+ NK cell responses, which accelerated the in vitro EBV-infected tumor cells spread. In contrast, the blocking of NKG2A by monoclonal antibodies (Monalizumab) resulted in efficient control of EBV-infected tumor cell growth, especially by NKG2A+NKG2C+ NK cells. Thus, the HLA-E/LMP-1/NKG2A pathway and individual NKG2C+ NK cell responses are associated with the progression toward EBV+ lymphomas.


Assuntos
Infecções por Vírus Epstein-Barr , Linfoma , Adulto , Humanos , Herpesvirus Humano 4 , Infecções por Vírus Epstein-Barr/metabolismo , Células Matadoras Naturais , Linfoma/metabolismo , Peptídeos
15.
Adv Mater ; 35(44): e2304122, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37434421

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising cell-based immunotherapy approach for treating blood disorders and cancers, but genetically engineering CAR-T cells is challenging due to primary T cells' sensitivity to conventional gene delivery approaches. The current viral-based method can typically involve significant operating costs and biosafety hurdles, while bulk electroporation (BEP) can lead to poor cell viability and functionality. Here, a non-viral electroactive nanoinjection (ENI) platform is developed to efficiently negotiate the plasma membrane of primary human T cells via vertically configured electroactive nanotubes, enabling efficient delivery (68.7%) and expression (43.3%) of CAR genes in the T cells, with minimal cellular perturbation (>90% cell viability). Compared to conventional BEP, the ENI platform achieves an almost threefold higher CAR transfection efficiency, indicated by the significantly higher reporter GFP expression (43.3% compared to 16.3%). By co-culturing with target lymphoma Raji cells, the ENI-transfected CAR-T cells' ability to effectively suppress lymphoma cell growth (86.9% cytotoxicity) is proved. Taken together, the results demonstrate the platform's remarkable capacity to generate functional and effective anti-lymphoma CAR-T cells. Given the growing potential of cell-based immunotherapies, such a platform holds great promise for ex vivo cell engineering, especially in CAR-T cell therapy.


Assuntos
Linfoma , Receptores de Antígenos de Linfócitos T , Humanos , Linfócitos T , Transfecção , Eletroporação , Linfoma/metabolismo
16.
Cells ; 12(13)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37443818

RESUMO

CD30, also known as TNFRSF8 (tumor necrosis factor receptor superfamily member 8), is a protein receptor that is heavily glycosylated inside the Golgi apparatus, as well as a tumor marker that is found on the surface of specific cells in the body, including certain immune cells and cancer ones. This review aims to shed light on the critical importance of CD30, from its emergence in the cell to its position in diagnosing various diseases, including Hodgkin lymphoma, where it is expressed on Hodgkin and Reed-Sternberg cells, as well as embryonal carcinoma, anaplastic large cell lymphoma (ALCL), and cutaneous T-cell lymphoma (CTCL). In addition to its role in positive diagnosis, targeting CD30 has been a promising approach treating CD30-positive lymphomas, and there is ongoing research into the potential use of CD30-targeted therapies for autoimmune disorders. We aim to elaborate on CD30's roles as a tumor marker, supporting thus the hypothesis that this receptor might be the aim of cytostatic treatment.


Assuntos
Doença de Hodgkin , Linfoma Anaplásico de Células Grandes , Linfoma , Humanos , Doença de Hodgkin/metabolismo , Linfoma/metabolismo , Linfoma Anaplásico de Células Grandes/diagnóstico , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Células de Reed-Sternberg/metabolismo , Células de Reed-Sternberg/patologia , Antígeno Ki-1/metabolismo , Biomarcadores Tumorais/metabolismo
17.
Curr Hematol Malig Rep ; 18(6): 217-225, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37490229

RESUMO

PURPOSE OF REVIEW: Largely, treatment advances in relapsed and/or refractory acute lymphoblastic leukemia (ALL) have been made in B cell disease leaving T cell ALL reliant upon high-intensity chemotherapy. Recent advances in the understanding of the biology of T-ALL and the improvement in immunotherapies have led to new therapeutic pathways to target and exploit. Here, we review the more promising pathways that are able to be targeted and other therapeutic possibilities for T-ALL. RECENT FINDINGS: Preclinical models and early-phase clinical trials have shown promising results in some case in the treatment of T-ALL. Targeting many different pathways could lead to the next advancement in the treatment of relapsed and/or refractory disease. Recent advances in cellular therapies have also shown promise in this space. When reviewing the literature as a whole, targeting important pathways and antigens likely will lead to the next advancement in T-ALL survival since intensifying chemotherapy.


Assuntos
Linfoma de Células T , Linfoma , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Imunoterapia/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Linfócitos T , Linfoma/metabolismo
18.
EMBO Mol Med ; 15(6): e16910, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37158102

RESUMO

MYC is a key oncogenic driver in multiple tumor types, but concomitantly endows cancer cells with a series of vulnerabilities that provide opportunities for targeted pharmacological intervention. For example, drugs that suppress mitochondrial respiration selectively kill MYC-overexpressing cells. Here, we unravel the mechanistic basis for this synthetic lethal interaction and exploit it to improve the anticancer effects of the respiratory complex I inhibitor IACS-010759. In a B-lymphoid cell line, ectopic MYC activity and treatment with IACS-010759 added up to induce oxidative stress, with consequent depletion of reduced glutathione and lethal disruption of redox homeostasis. This effect could be enhanced either with inhibitors of NADPH production through the pentose phosphate pathway, or with ascorbate (vitamin C), known to act as a pro-oxidant at high doses. In these conditions, ascorbate synergized with IACS-010759 to kill MYC-overexpressing cells in vitro and reinforced its therapeutic action against human B-cell lymphoma xenografts. Hence, complex I inhibition and high-dose ascorbate might improve the outcome of patients affected by high-grade lymphomas and potentially other MYC-driven cancers.


Assuntos
Linfoma de Células B , Linfoma , Humanos , Linhagem Celular Tumoral , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Linfoma/patologia , Linfoma de Células B/tratamento farmacológico , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-myc/metabolismo
20.
Front Immunol ; 14: 1170968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215124

RESUMO

The high expression of CD7 targets in T-cell acute lymphoblastic leukemia (T-ALL) and T-lymphoma has attracted considerable attention from researchers. However, because CD7 chimeric antigen receptor (CAR) T-cells undergo fratricide, CD7 CAR T-cells develop an exhaustion phenotype that impairs the effect of CAR T-cells. There have been significant breakthroughs in CD7-targeted CAR T-cell therapy in the past few years. The advent of gene editing, protein blockers, and other approaches has effectively overcome the adverse effects of conventional methods of CD7 CAR T-cells. This review, in conjunction with recent advances in the 64th annual meeting of the American Society of Hematology (ASH), provides a summary of the meaningful achievements in CD7 CAR T-cell generations and clinical trials over the last few years.


Assuntos
Imunoterapia Adotiva , Leucemia Mieloide Aguda , Linfoma , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Linfoma/metabolismo , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...